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Abstract

Data movement across computer memory hierarchy and across hosts of distributed systems is known to be a limiting
factor for applications processing large data sets. We use the Data Cube Operator on an Arithmetic Data Set, called
ADC, to benchmark computer capability to handle large datasets. To compute the operator we implement a parallel
algorithm that computes a view from the smallest parent. Thealgorithm employs RB-trees to process data fitting into
memory and a multi-way merge to process data residing in secondary storage. The ADC stresses all levels of memory
and storage by generating some of2d views of an Arithmetic Data Set ofd-tuples described by a small number of
integers. Data intensity of the ADC can be controlled by selecting the tuple parameters, the sizes of the views, and
the number of generated views. We present benchmarking results of memory performance of a number of computer
architectures and of a small distributed system. Based on the benchmark we build a tool which reveals a computer
memory signature and allows to rank computer memory performance.

1 Introduction

1.1 Memory Performance and Data Intensive Applications

Memory hierarchy of modern machines is growing in many directions: in size, in depth, and in complexity [10,
Ch. 5]. Some computers employ dedicated multilevel caches (SGI Origin and Altix), others employ shared multilevel
caches (IBM Power4), or use a combination of caches with vector registers (Cray X1), or unconventional architec-
tures to hide memory latency (Cray MTA and Stanford STREAM processor). In spite of these efforts, even the best
implementations of many important scientific codes on cachebased machines achieve only 10-20% of peak machine
performance due to slowness in feeding data to processors. For data-intensive applications, performing a few opera-
tions per datum and accessing data in a random fashion, memory performance is the critical factor.

Two commonly used memory performance measures, bandwidth and latency, can be applied only for extreme
cases of applications where all memory accesses are well vectorized or each access is an L2 miss. A memory perfor-
mance measure which can be used to estimate performance of data intensive applications should reflect performance
of all relevant memory components (from L1 to I/O). Several benchmarks are available for evaluation of memory
and I/O systems, including STREAM and PTRANS [13], HINT [12], the recently developed NAS BTIO [30], and
TPC transaction processing benchmarks [10], Ch. 7.9. The STREAM and PTRANS benchmarks measure memory
bandwidth by accessing contiguous memory locations and sending data to a processor (STREAM) or between pro-
cessors (PTRANS). The HINT benchmark computes
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= 2 ln 2 − 1 using a hierarchical integration method
[12]. As precision of the computation increases, the hierarchical integration uses a finer partition of the interval which
increases date set size. A drop in efficiency of the computation indicates that the dataset does not fit in cache. A similar
probing of the memory caches can be accomplished by accessing the memory with a fixed stride [10, p. 513]. NAS
BTIO benchmark is designed to test the capability of systemsto support parallel I/O. TPC benchmarks are designed
to compare performance of query systems rather than to benchmark memory or I/O performance.

We propose a data-intensive application benchmark which generates a large volume of data and, depending on
the input data size, can be used to benchmark performance of any level of computer memory, from L1 to I/O and
distributed storage. By varying the size of input data, the benchmark can spill data across a few top levels of the
computer memory hierarchy, also making it a good tool for obtaining a memory signature. This new benchmark,Data
Cube(DC), takes a synthetic dataset described by a small number of parameters and generates multiple views of this
set. Informally, it can be classified as multidimensional sorting. Multiple processors can work in parallel to measure
combined performance of multiple I/O systems attached to a machine. Furthermore, the parameters of the input dataset
can be chosen to saturate I/O systems of the largest existingmachines, so that multiple hosts may be efficiently used
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to reduce the benchmark turn-around time.
The DC benchmark performs a data-intensive operation knownin data mining as theData Cube Operator(DCO).

Informally, DCO computes views of a dataset represented as aset of tuples. For a chosen set of attributes, a view is a
sorted set of the tuples with attributes from the set. To generate a view, DCO performsO(log n) memory accesses per
tuple, wheren is the number of tuples in the view. A view can be generated either from the original dataset or from a
parent(a view having one more attribute than the target view). Thisproperty allows us to split DCO into tasks having
small intertask communications and to distribute the tasksacross processors or/and hosts. A natural measure of the
DCO performance isTUples generatedPerSecond (TUPS). TUPS represents the rate at which DCO generates tuples.
The inverse to it, Time Per Tuple is useful to uncover memory signature, see Section 5.1.

In spite the fact that memory subsystem may be described by a few parameters, the memory performance is a
complicated function of these parameters. On real applications the memory performance can not be judged just based
on the parameters, hence the application benchmarks are playing role of racetracks for the computer memory.

1.2 The Data Cube Operator

The main subject of data warehousing, On-Line Analytic Processing (OLAP), decision support database systems,
data mining systems, and resource brokers, is a dataset represented as a list of tuples. A tuplet of a dataset havingd
dimension attributes and a single measure attribute can be represented ast = (i1, . . . , id, c), where each dimension
attributeij assumes values in an interval[1, mj − 1], andc is a cost function (a measure) associated with(i1, . . . , id).
The goal of OLAP is to help users discover patterns and anomalies in the dataset by providing short query execution
times [24].

A standard tool of OLAP is the DCO [9] which computes views (orgroup-bys) of a dataset. For a chosen subset of
k attributes, a view is a sorted set ofk-tuples containing only the chosen attributes with accumulated measures of the
duplicates. DCO computes views of interesting subsets of the dimensions. For example in [3, 14] there are proposed
approaches for mining multi-dimensional association rules and answering iceberg queries by computing an iceberg
cube containing views exceeding a certain threshold.

The input data sets and some of the materialized views usually do not fit in core memory, thus DCO computation
requires a careful reuse of data loaded into the main memory (and all levels of cache). Computations of the DCO
feature intensive data traffic across various levels of memory, making DCO especially interesting as a data-intensive
benchmark. Also, the size of the DCO output is usually significantly larger than the size of the input. Many papers
are devoted to efficient computation of the DCO [15, 17, 23, 31] including parallel DCO computation algorithms
[5, 18, 21]. To improve the efficiency of querying data cubes,a number of publications consider calculation and
storage of data cubes as condensed cubes [29] or as other highly compressed structures [26].

For the reference implementation, we choose a greedy algorithm [15] that computes each view from a smallest
parent. We assume that all attribute values are integers. Although real OLAP datasets and existing OLAP benchmarks
[22, 28] use mostly strings as attribute values, this is not asignificant limitation, since strings can be enumerated by
integers (using hashing, for example). One of the advantages of using integer attribute values is reduction in the size
of the input datasets and of the materialized views.

2 The DC Benchmark

2.1 Features and Parameters

There exist datasets to test OLAP systems, DCO algorithms, and data mining algorithms, for example, the ABP-1
and TPC-C,H,R,W benchmark databases [10, 22, 28]. For benchmarking purposes, the most appropriate is a synthetic
parametrized data set which can be generated by a small program. This would make the dataset scalable, the distribu-
tion of the benchmark manageable, and verification simple. Also, a synthetic dataset, as in many real applications, can
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be generated in a distributed fashion, saving the effort andthe overhead of splitting and distributing the dataset across
machines in a distributed system.

In available synthetic data sets, the tuples are randomly generated. These datasets do not provide any means to
control the sizes of the views. One can estimate the view sizes using sampling or some analytical methods [15, 26].
In [7] we introducedthe Arithmetic Data Set(ADS), which is generated by a random number generator but has the
advantage of a priori known sizes of the views.

ADS S is a subset of a groupQ defined by

Q =
d

⊕

i=1

(Z/miZ)∗,

where(Z/miZ)∗ is the set of integers modulomi relatively prime withmi. An element ofS can be represented by a
tuplex = (x1, . . . , xd), wherexi is a modulomi residue. The subsetS is defined by a seeds = (s1, . . . , sd) ∈ Q, a
generatorg = (g1, . . . , gd) ∈ Q, si, gi 6= 0, i = 1, . . . , d, and the total number of elementsn:

S =

n−1
⋃

j=0

(s1g
j
1, . . . , sdg

j
d),

where the multiplication operations are within groupQ. For any subset ofk different cube dimensionsI = {i1, . . . , ik} ⊂
{1, . . . , d}, theI-view of x ∈ Q is defined as a projection ofx on theI-face of the cube:

xI = (xi1 , . . . , xik
).

TheI-view of S is the set ofI-views of all elements ofS, or SI = {xI |x ∈ S}. If qi is the smallest integer such that
gqi

i = 1 mod (mi), for the number of distinct elements inSI , we have a formula|SI | = min(n, LCMi∈I(qi))
1, [7].

2.2 Choice of the Measures

In real applications, the sum of measures of all tuples in theview is used to characterize a view. In the bench-
mark, we use a single checksum for testing correctness and completeness of the computations. For this purpose, it is
important that:

• the measure of a tuple can be computed independently of othertuples

• the measure of a view cannot be calculated unless all tuples of a view have been generated

• the checksum is a separable function of the checksums of the views

To meet these requirements, we limit the maximum measure value by an arbitrarily chosen numberM = 31415. Then
we define the measure of a tuplex = (x1, . . . , xd) to be

µ(x) = X ∗ g mod M

whereX is the maximum of the attribute values ofx, andg is the first seed ofx. Finally we define the checksum of
the viewI = {i1, . . . , ik} ⊂ {1, . . . , d} to be

c(I) =
∑

x∈SI

(ν(x) ∗ µ(x) mod M)

whereν(x) is the sequence number of a tuple inSI . As a result, the checksum of a view does not exceedM times
the total number of the input tuples. Finally, the checksum of the benchmark is a sum of checksums of all generated
views.

1LCM stands for the Least Common Multiple.
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3 Implementation of Data Cube Computation

3.1 Approaches to Data Cube Computation

Since the publication of [9], a number of sequential and parallel data cube computation algorithms have been
developed. These algorithms constitute two main groups, depending on whether they compute the views by means of
sorting or by a hash table [8]. Each group employs similar optimizations: smallest-parent, cache-results, amortize-
scans, [23, 15]. A share-sort optimization is specific to thesorting based algorithms. TheArrayCube[31] algorithm,
based onMulti-Way Array-Basedmethod, is another class of DCO computation algorithms. It uses a chunk-offset
compression technique to deal with sparse data and memory management and performs a pipelined tuples aggregation.
ArrayCubeis the first practical algorithm designed for multidimensional OLAP systems. The generated data cubes
often are stored as condensed or highly compressed cubes [29, 26, 17] to improve the efficiency of querying.

The views can be computed either in a top-down or bottom-up manner [23, 3]. Such algorithms asPipeSort,
PipeHash, andOverlap use the top-down approach. ThePipeSortalgorithm actually determines the sequence of
views by finding a minimum weight matching in a bipartite graph. If the view size decreases as a function of the
number of view attributes, these algorithms outperform many other algorithms.

Many DCO algorithms [9, 15, 23] use a smallest-in-size view “parent” from a set of already calculated views to
create a new view. For certain classes of aggregation functions, dependency among related views can be represented as
a search lattice [15]. The optimal sequence of views can be determined by solving a minimum spanning tree problem
where cost of each node is the view size.

3.2 The Top-Down Data Cube Computation

For the reference implementation, we choose the top-down, sort-based data cube computation which uses the
smallest-parent heuristic. The algorithm reads ADC data tuple-by-tuple from a file. It inserts a tuple into a balanced
tree using dimension attributes as a key. If a tuple with the key is found in the tree, the measure values are aggregated.
If a view fits into main memory, the algorithm performs all aggregations “on-the-fly”. After a view is built, the next
view is computed from a smallest parent view. The algorithm proceeds until the computation of all views has been
completed.

We use balanced trees (namely,Red-Black-trees) to aggregate data in a sort-base algorithm because they provide a
simple way to aggregate data on-the-fly. This leads to a simple implementation of both internal and external branches
of DCO. For data with a small number of duplicates, a regular sort will likely outperform the balanced trees. However,
if the collapsing ratio is moderate, this performance gain will not be significant. Other balanced trees (for example,
AVL-trees or someB-tree modifications) are suitable to aggregate data in main memory. However, experiments show
that the performance gain is not significant relative to theRB-trees. Potentially, one can use variants ofB-trees (for
instance,B+-trees orB*-trees) to aggregate data in an external case. That would be convenient because no merging
would be necessary, but extremely inefficient. Despite improvements in cache performance, theB+-trees show bad
performance for large random datasets. If, for example, aB+-tree cache can only store 10-20% of data, the high
chance of reading at least one page from disk in any insert operation results in a large I/O volume. To be competitive,
an external sort with multi-way merging has to significantlyoutperform anyB-tree implementations.

Our sequential algorithm performs a dynamic task planning.It computes the data cube in a top-down, level-by-level
manner. The algorithm starts to compute views with the givennumber of attributes when all views of the larger number
of attributes are completed. To compute a new view, the algorithm chooses a smallest ready parent. The algorithm
uses simple data structures to dynamically maintain the search lattice (a weighted graph).

If a view does not fit into main memory, the algorithm uses an external sorting. In this case, the algorithm uses
balanced trees to form sorted chunks of the view. Each chunk contains only distinct tuples. Finally, the view is
assembled from the chunks by means of multi-way merging.
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3.3 DC Performance Model

Most DC execution time is spent on accessing data: fetching data from memory/disk, sorting the data, and writing
the data to memory/disk. The main DC operation is the insertion of a tuple into theRB-tree. Some additional operations
include balancing of the tree, bookkeeping operations, reading/writing internal buffers, and constant time operations,
such as memory allocations.

For a view containingdi attributes, the size of each node of anRB-tree hasu0di + u1 bytes, whereu0 andu1 are
constants2. Since we are using balanced trees, the number of nodes from the root to a leaf is betweenlog n and2 log n
for anRB-tree, wheren is the number of unique tuples in the view. Hence, an insertion of a tuple involves reading of
approximately

(u0di + u1) log n

bytes. Since
(

d
di

)

attains a maximum arounddi = 1

2
d, the typical value ofdi is di = 1

2
d. Actual access to the tree

nodes involves a number of pointer dereferences, such as looking for the left or right node and checking the node color.
A comparison of attributes of a tuple stored in the node with attributes of the current tuple and creation of a new tree
node takesu0d memory accesses.

In addition, there is a number of auxiliary operations, suchas reading the smallest parent and updating pointer
arrays. These operations involvev0dn memory accesses. Hence, the total number of cycles requiredto compute a
view is

µ((u0di + u1)n log n + v0dn) + w0,

whereµ is the average number of machine cycles it takes to access a datum andw0 is a constant number of bookkeeping
operations incurred once per all views.

The value ofµ changes as the number of input tuples grows. If the L1 cache can hold a tree of depthl andn ≤ 2l,
all tree node accesses are L1 hits andµ = M1 + m0, whereM1 is the number of cycles it takes to access a datum in
the L1 cache, andm1 is time to access a tuple amortized over all node accesses. For a two-level cache, if a tree of
depthl fits in the main memory, and a cache of leveli can hold a tree of depthli, the cost of insertion is

µ =
1

l
(M1l1 + M2(l2 − l1) + M0(l − l2)),

whereM0 is the number of cycles to access a datum in main memory, andM1 andM2 are the number of cycles to
access a datum in L1 and L2, respectively. Hence, as the number of input tuples grows, the tree spills out of L1, and
then out of L2, the cost of memory accessµ gradually increases.

If all tuples in all views are unique and the total number of generated tuples is2dn, it takes2dµ((u0di+u1)n log n+
v0dn)+w0 cycles for accessing memory. After simplification and taking into account that a typical value ofdi is d/2,
we conclude that the time per tuple is

T = µ((v1d + u1) log n + v0d) +
w0

n
, (1)

wherev1 = u0/2. TUPS of the algorithm equalsT−1.
This formula for time per tuple has a simple interpretation.For smalln, the last term dominates the others, hence

the time decreases asw0/n. For largen the first term dominates the others, hence time per tuple is proportional to
log n, to the costµ of access to the current level of memory, and to the number of attributesd. In practice, not all
views have sizesn, andu1 dominatesv1d. As a result, equation (1) should be considered only an approximation.

2Specifically, if the machine has 64-bit pointers and the tuple attributes are 4 bytes long, the node size is36 + 4 ∗ di.
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4 Distributed Data Cube Computation

4.1 Parallel Data Cube Computation

There are a number of ways to perform DCO in parallel [4, 5, 19,21]. The child-parent dependences among views
usually are represented by a weighted lattice of the views. The weights of the nodes of the lattice (the view sizes) and
of its edges (costs of calculating dependent views) are usually estimated. A common final step is a partitioning of a
weighted spanning tree of the lattice intop balanced tasks, wherep is the number of processors.

A method described in [5] creates a relatively small number of coarse-grained independent tasks. First, it creates a
spanning treeT of the view lattice with the view weights representing the cost of creating it from a matched parent in
T . The partitioning ofT into subtrees is an NP-complete problem [5]. So they use a heuristic approach, which creates
thep balanced subproblems and minimizes the number of subtrees assigned to a processor. First, the min-max tree
k-partitioning algorithm [2] is used to partitionT into s · p subtrees, wheres ≥ 1 is an integer calledoversampling
ratio. Then, the partitioning uses a packing heuristic to assigns subtrees to the processors. The performance results
[5] show that a partitioning withs equal 2 or 3 provides good load balancing across the processors.

In our parallel implementation of DCO computation we use a simpler algorithm. We use a priori knowledge of the
view sizes to partition the data cube such that output data files (files with generated views) are well balanced across the
processors. We distribute the output data across all view files evenly because the data cube computation is I/O-bound.
Since the size of the output data cube is usually significantly bigger than the size of input data, this approach yields
a relatively good load balance. We partition the data cube into coarse-grained independent tasks with little inter-task
communication, so that the tasks can be executed on shared memory machines, clusters of shared memory machines,
and in a distributed environment.

Assuming that the number of the processorsp is substantially smaller than the number of views, we assignthe views
to the processors in three steps. First, we sort all views by decreasing size. Then, we assign the views to processors
by zig-zag folding: jth-view is assigned to processor(−1)ej + e(p − 1) mod p, wheree = (j/p) mod 2. Finally,
we restore child-parent relationships in the lists of viewsassigned to each processor by sorting the lists by the number
of dimension attributes. Now each processor computes a viewfrom the smallest parent. This approach gives a load
balance exceeding 94% in our experiments.

4.2 Parallelization for Multiple Hosts

Our experiments with the DC benchmark (see Figure 5) show that, on a parallel machine, we can use only a few
processors efficiently. The reason is that the benchmark saturates the machine I/O devices. On the other hand, since
there is little communication between DC tasks, the DC turn-around time can be reduced if some tasks are executed
on other hosts.

When forming tasks, we have to take into account that thei-th machine has a performance ofτi TUPS. To achieve
a good load balance, we have to assign to thei-th machine, a load ofV ∗ τi/T , whereV is the total load and

T =

s
∑

i=1

τi.

To do that we use a modification of the zig-zag folding of Section 4.1. We sort all views by decreasing the sizes. Then,
we assign the views to the machines by scanning the machines alternately in directions of increasing and decreasing
of i, skipping the machines whose load exceedsV ∗ τi/T . We then partition the tasks assigned to each machine, as
described in Section 4.1.
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5 DC Benchmark Results

We tested the DC Benchmark on the machines shown in Table 1 with normal production load during our experi-
ments.

Table 1. The machines used in our experiments.
Machine Name NP Clock Rate Peak Perf. Memory Maker Architecture Batch

(MHz) (GFLOPS) (GB) System

SF880 8 900 14.4 16 SUN UltraSparc 3 -
O3K1 1024 600 1200 256 SGI Origin3800 PBS
O3K2 512 400 400 262 SGI Origin3000 PBS
O3K3 256 400 200 98 SGI Origin3000 PBS
U60/1 2 450 1.8 1 SUN ULTRA60 -
U60/2 2 450 1.8 1 SUN ULTRA60 -
O2K 32 250 16 8 SGI Origin2000 -
G4 1 1250 2.5 1 Apple G4 -
XEON 2 3060 - 2 Intel Hyperthreaded -
ALTIX 64 1500 384 128 Intel Itanium2 -

5.1 Single Processor Memory Signature

Experimental results of running a single processor versionof the DC benchmark with 11, 12, and 14 dimensions are
shown in Figures 1 and 2. Figure 1 clearly indicates presenceof an initial segment and two straight line segments in
each plot. The initial segment indicates domination of the last term of Equation 1. Each straight line segment indicates
the log n term of Equation 1 with constant memory access costµ. The end points of the segments reflect a change in
the memory access costµ when theRB-trees, used for sorting of the views, grow beyond the L1 and L2 caches. As a
result, the minimum in the graphs indicates the point when the L1 cache is filled up by the tree, hence the size of the
L1 cache can be estimated from the minimum and the tree node size (4 ∗ d + 36, see Section 3.3).

Plots for dimensions 12 and 14 for three architectures are shown in Figure 2. These plots demonstrate that the
structure (initial segment - two straight line segments) holds for other dimensions/architectures. This gives us a base
to call Time Per Tuple (TPT) of DC.U a memory signature.

5.2 Scalability of Memory Performance

The graphs of Figures 3 and 4 show that in-core computations of DC scale very well. The actual load imbalance
was less than 6% for up to 32 processors. Comparison of the right graph on Figure 3 and graphs on Figure 4 shows
that the overhead of memory initialization on an Origin3800is significantly larger than that on a SUNFire 880, while
for larger sizes of input data, memory performance of the twoarchitectures is very close.3

5.3 Scalability of I/O Performance

For large datasets, theRB-trees do not fit in core memory, and Figure 5 shows that the increase in the number of
processors does not improve TUPS (TUples Per Second). It indicates that the I/O system on the machine has been

3The memory performance gap between the Origin 2000 and SUNFire 880 is about 2.5 and growing with the size of the input set, see Figure 1.
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Figure 1. Time per tuple of DC with 11 dimensions on the SUNFir e 880 and Origin 2000. Each
curve consists of an initial segment, and two straight line s egments. These segments are
(64,512), (512,64K), and (64K,2M) for SUNFire 880 and (64,1 K), (1K,32K), and (32K,2M) for Origin
2000, respectively.

fully utilized. To avoid the I/O bottleneck, we distributedthe DC across hosts using the algorithm in Section 4.2. Such
distribution incurs a small overhead, since, as soon as a parent view of a task is generated, the task does not have to
communicate with others. The results shown in Table 2 demonstrate that TUPS increases when additional hosts are
used.

5.4 Benchmark Classes

In practice, to use a significant number of DC instances as a benchmark would be confusing for the users. To get the
memory signature for any particular machine, the user has tomake runs of DC for different sizes of the input datasets.
The verification values for a significant number of DC instances would constitute a large array of data to be distributed
with the benchmark. To resolve these issues, we specify a fewrepresentative points in the ADC parameter space. This
follows the NPB tradition to specify classes (S, W, A, B, C, and D) reflecting the computational effort required to
perform the benchmark. In DC we define classes so that they will exercise all levels of memory hierarchy of current
systems, from L1 to the I/O system. This restriction will notprevent a user from obtaining memory signatures using
DC, but it will focus their experiments in the representative points in the ADC parameter space. For choosing classes,
we use the flexibility provided by our choice of the dataset generator.

For the benchmark we choosemi to be prime numbers andgi to be generators of(Z/miZ)∗, hence having period
qi = fi = mi − 1. Also, we choosemi such thatmi − 1 has many small prime factors so that LCMi∈I(qi) has a good
chance of been small. This approach gives us full control over the sizes of the dataset and its views. Our actual choice
of themi is shown in Table 3.
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Figure 2. The Time per Tuple curves of DC 12 and 14 dimensions o n the Ultra Sparc 60, SUNFire
880, and Origin 3800, respectively.

Table 2. Various load distributions among hosts. The “np” in dicates the number of proces-
sors used on the machine, the “load” is a fraction of the load p er machine processor, hence
“np” ·“load” equals the fraction of work assigned to the machine.

Machine Experiment Number

1 2 3 4 5 6

np load np load np load np load np load np load
SF880 8 1/8 - - - - 4 1/8 4 1/8 4 1/8
O3K1 - - 8 1/8 - - 4 1/8 8 1/32 - -
O3K2 - - - - 8 1/8 - - 8 1/32 8 1/32
U60/1 - - - - - - - - - - 2 1/16
U60/2 - - - - - - - - - - 2 1/16
time (s) 242.2 179.1 179.3 106.2 93.1 93.1
TUPS 848·103 1145.7·103 1145.5·103 1934.4·103 2206.5·103 2206.5·103

We choose four groups of prime numbers{3, 5, 7}, {11, 13, 17, 19}, {23, 29, 31, 37}, and{41, 43, 47, 53,
59}. For each group we choose the five smallest primesmi such that prime factors ofmi − 1 are 2 and numbers from
this group4, Table 3. This set of parameters gives us a dataset of25 ·32 ·52 ·72 ·11 ·13 ·17 ·192 ·23 ·29 ·312 ·37 ·41 ·43 ·
47 ·53 ·59 different tuples and, for example, we can choosen = 2 ·11 ·23 ·41 ·3 ·13 ·29 ·43 ·5 ·17 = 85759918530. At

4Since we use odd primes,mi − 1 always has 2 as a factor.
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Figure 3. Scalability of Time per Tuple of DC on the Ultra Spar c 60, left pane, and on the SUNFire
880, right pane.

the same time, the sizes of five-dimensional views (relativeto each of the groups) are small relative to the total number
of the elements in the dataset. We further restrict the set ofparameters to make four classes of the benchmark: S, W,
A, and B and reduce the sizes of the views having many attributes. For doing this, we designate subcubes generated
by the first 5, 10, 15, and 20 dimensions as classes S, W, A, and Brespectively, Table 3.

We also leave out parameters for theUser defined class U. In this class, a user can specify any subset of the attributes
and any number of tuples. For the class U, we do not provide checksums or verification values. The total number of
tuples in each class, the sizes of input and estimated outputfiles are shown in Table 4. The final results of the DC
benchmark on our experimental set of machines are shown in Table 5.

6 Related Work

The importance of memory performance in the overall assessment of system performance was recently acknowl-
edged by the Innovative Computing Laboratory at The University of Tennessee at Knoxville by adding three memory
benchmarks:STREAM, PTRANS, andb eff to the LINPACK benchmark and creation of the HPC Challenge Bench-
mark suite [13]. TheSTREAMbenchmark measures memory bandwidth by streaming very longvectors through
the processor’s registers and computing linear combinations of the vectors. The parallel matrix transposePTRANS
benchmark exercises communication capacity of the computer memory by transposing a large dense matrix. Dur-
ing the transpose, pairs of processors communicate with each other simultaneously. Theb eff (effective bandwidth)
benchmark measures the effective bandwidth by simultaneously sending (MPI) messages using several communication
patterns. The patterns are based on rings and on random distributions of the communicating processes.

The HINT benchmark [12] was used for probing sizes of the primary and secondary caches. Recently, it was
realized that similar probing of the memory caches can be accomplished by traversing the memory with a fixed stride
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Figure 4. Scalability of Time per Tuple of DC.U on the Origin 3 800.

[10, , p. 513]. Such a walk causes numerous cache and TLB misses and may result in low memory performance. This
method has been used for fighting email spam by asking the sending computer to pay some computational cost per
email message by solving a memory bound puzzle.

The benchmarking of data mining systems is a well-established area of High Performance Computing [22, 28].
These benchmarks are designed to compare performance of query systems rather than to benchmark memory or I/O
performance.

An adaptive probesqmat was proposed in [11] to identify single processor memory bottlenecks. This probe uses
four parameters of scientific workloads to identify bottlenecks: working-set size, computational intensity, indirection
and irregularity. Thesqmat parameters controlling these properties can be set independently and the probe execution
time can be used to grade processor memory performance.

7 Summary

The DC benchmark represents an important set of computations used in OLAP and data mining. It executes
O(log n) memory accesses per output tuple and is memory or I/O bound. The Arithmetic Data Sets used in DC are
described by a small number of parameters and have a priori known sizes of the views. Parallelization of the DC
incurs a small overhead and can be well-balanced in load. We introduce the number of generated TUples Per Second
(TUPS) as a DC performance metric. The reciprocal of TUPS, Time Per Tuple gives a signature of the computer
memory performance. We use characteristic points in the signatures to choose parameters of various classes of DC.
We provide a reference implementation of the DC benchmark and use it to benchmark TUPS of several computer
architectures. We demonstrated that DC can saturate a machine’s I/O system and in this case, its performance can
be improved by using additional hosts. A serial version of DCis available on the NAS Parallel Benchmarks website
(www.nas.nasa.gov/Software/NPB) as part of the NPB3.1 package.
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SUNFire 880) and from 8 to 32 (Origin 3800), the DC benchmark p erformance degrades due to
a saturation of the I/O systems.
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Table 3. Dimensions of the Arithmetic Data Cube and generators for Classes S, W, A, and B. Here “Least
Gen.” γi is the smallest generator of(Z/miZ)∗, and the “Exponent for the class” isei such that gi = γei

i

for given class.

Prime Factorization of Least Exponent for the class Seed
m − 1 Gen. U S W A B

1. 421 22 · 3 · 5 · 7 2 11 11 22 22 22 · 7 211
2. 601 23 · 3 · 52 7 13 13 23 · 5 23 · 5 23 · 5 301
3. 631 2 · 32 · 5 · 7 3 17 17 2 · 3 2 · 3 2 · 3 · 7 316
4. 701 22 · 52 · 7 2 19 19 22 · 5 22 · 5 22 · 5 · 7 351
5. 883 2 · 32 · 72 2 23 23 2 · 3 · 7 2 · 3 · 7 2 · 3 · 72 442

6. 419 2 · 11 · 19 2 23 23 2·19 2 · 19 210
7. 443 2 · 13 · 17 2 29 29 2 · 13 2 · 13 222
8. 647 2 · 17 · 19 5 31 31 2 · 19 2 · 19 324
9. 21737 23 · 11 · 13 · 19 31 37 22 23 · 13 · 19 23 · 13 · 19 10869
10. 31769 23 · 11 · 192 7 41 22 · 19 23 · 192 23 · 192 15885

11. 1427 2 · 23 · 31 2 41 2 · 23 2 · 31 714
12. 18353 24 · 31 · 37 3 43 24 24 · 31 9177
13. 22817 25 · 23 · 31 3 47 25 · 23 25 · 31 11409
14. 34337 25 · 29 · 37 3 53 25 25 · 29 17169
15. 98717 22 · 23 · 29 · 37 2 59 22 · 23 22 · 29 49359

16. 3527 2 · 41 · 43 5 3 2 · 43 1764
17. 8693 22 · 41 · 53 3 5 22 4347
18. 9677 22 · 41 · 59 2 7 22 4839
19. 11093 22 · 47 · 59 2 11 22 · 47 5547
20. 18233 23 · 43 · 53 3 13 23 · 43 9117

Table 4. The main sizes of the ADC. The notation a:b:c in the Views Generated row indicates starting
view:ending view:view number increment.

U S W A B

Dimensions - 5 10 15 20
Generator period - 88200 9699690 653119005 306037160385
Number of tuples - 103 105 106 107

ADC size - 28 KB 4.8 MB 68 MB 880 MB
Views generated all all all 0:215 − 1:26 0:220 − 1:214

Output size - 547 KB 2.594 GB 17.84 GB 30.84 GB
Number of generated tuples - 29232 89297411 454765673 595267023
Verification checksum - 464620213 1401796434318 7141688178042 9348365700453



15

Table 5. Single processor DC performance. Classes S, W, and A were executed in-core, class
B was executed out-of-core.

CLASS

S W A B
Machine TUPS sec TUPS sec TUPS sec TUPS sec

SF880 1232897 0.02 624518 142.99 218774 2078.70 90575 6572.09
O3K1 175161 0.17 489962 182.25 234481 1939.46 114571 5196.62
O3K2 203182 0.14 345283 258.62 178296 2550.62 - -
U60/1 549174 0.05 263525 338.86 155632 2922.06 - -
O2K 176118 0.17 197893 451.24 105416 4314.01 - -
G4 2019202 0.01 474797 188.07 - - - -
XEON 2617712 0.01 766794 116.46 478907 949.59 - -
ALTIX 1849775 0.02 1294115 69.00 513630 885.40 - -
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